10 research outputs found

    Azimuthal Dependence of GNSS‐R Scattering Cross‐Section in Hurricanes

    Full text link
    Global Navigation Satellite System‐Reflectometry (GNSS‐R) measurements of the ocean surface are sensitive to roughness scales ranging from a few cms to several kms. Inside a hurricane the surface roughness changes drastically due to varying sea age and fetch length conditions and complex wave‐wave interactions caused by its cyclonic rotation and translational motion. As a result, the relationship between the surface roughness at different scale sizes becomes azimuthally dependent, as does the relationship between scattering cross‐section and wind speed as represented by a Geophysical Model Function (GMF). In this work, the impact of this azimuthal variation on the scattering cross‐section is assessed. An empirical GMF is constructed using measurements by the NASA CYclone GNSS (CYGNSS) matched to HWRF reanalysis surface winds for 19 hurricanes in 2017 and 2018. The analysis reveals a 2–8% variation in scattering cross‐section due to azimuthal location, and the magnitude of the azimuthal dependence is found to grow with wind speed.Plain Language SummaryGlobal Navigation Satellite System‐Reflectometry (GNSS‐R) is a technique of studying reflected GPS signals to extract useful information about the surface. CYGNSS is the first of its kind GNSS‐R constellation mission selected by NASAs earth venture program. The goal of the mission is to understand inner core processes in hurricanes by making accurate surface wind speed measurements there. Wind speed at the surface is determined using a GMF that maps the reflection measurement to a wind speed. Due to the complex nature of sea state and wave interactions inside a hurricane, measured scattering cross‐section depends on the azimuthal location of the measurement inside the hurricane system. A modified GMF is proposed here that accounts for the azimuthal dependence. The model is developed by matching up CYGNSS measurements to hurricane winds estimated by the NOAA HWRF model for 19 hurricanes during 2017 and 2018. The new GMF accounts for a 2–8% variation in the measurements due to azimuthal location which increases with wind speed.Key PointsAzimuthal variations of GNSS‐R scattering cross‐section in hurricanes are modeled with sinusoidal harmonicsThe azimuthal harmonics explain 2–8% of the overall variation in scattering cross‐sectionThe magnitude of the azimuthal harmonics increases with increasing wind speedPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156153/2/jgrc24060.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156153/1/jgrc24060_am.pd

    Investigating the Sensitivity of Spaceborne GNSS-R Measurements to Ocean Surface Winds and Rain

    Full text link
    Earth remote sensing using reflected Global Navigation Satellite System (GNSS) signals is an emerging trend, especially for ocean surface wind measurements. GNSS-Reflectometry (GNSS-R) measurements of ocean surface scattering cross section are directly related to the surface roughness at scale sizes ranging from small capillary waves to long gravity waves. These roughness scales are predominantly due to swell, surface winds and other meteorological phenomena such as rain. In this study we are interested in understanding and characterizing the impact of these phenomena on GNSS-R signals in order to develop a better understanding of the geophysical parameters retrieved from these measurements. In the first part of this work, we look at GNSS-R measurements made by the NASA Cyclone Global Navigation Satellite System (CYGNSS) for developing an effective wind retrieval model function for GNSS-R measurements. In a fully developed sea state, the wind field has a constant speed and direction. In this case, a single Fully Developed Seas (FDS) Geophysical Model Function (GMF) is constructed which relates the scattering cross-section to the near surface wind speed. However, the sea age and fetch length conditions inside a hurricane are in general not consistent with a fully developed sea state. Therefore, a separate empirical Young Sea Limited Fetch (YSLF) GMF is developed to represent the conditions inside a hurricane. Also, the degree of under development of the seas is not constant inside hurricanes and conditions vary significantly with azimuthal location within the hurricane due to changes in the relative alignment of the storms forward motion and its cyclonic rotation. The azimuthal dependence of the scattering cross-section is modelled and a modified azimuthal YSLF GMF is constructed using measurements by CYGNSS over 19 hurricanes in 2017 and 2018. Next, we study the impact of rain on CYGNSS measurements. At L-band rain has a negligible impact on the transmitted signal in terms of path attenuation. However, there are other effects due to rain, such as changes in surface roughness and rain induced local winds, which can significantly alter the measurements. In this part of the study we propose a 3-fold rain model for GNSS-R signals which accounts for: 1) attenuation; 2) surface effects of rain; and 3) rain induced local winds. The attenuation model suggests a total of 96% or greater transmissivity at L-Band up to 30mm/hr of rain. A perturbation model is used to characterize the other two rain effects. It suggests that rain is accompanied by an overall reduction in the scattering cross-section of the ocean surface and, most importantly, this effect is observed only up to 15 m/s of surface winds, beyond which the gravity capillary waves dominate the scattering in the quasi-specular direction. This work binds together several rain-related phenomena and enhances our overall understanding of rain effects on GNSS-R measurements. Finally, one of the important objectives for the CYGNSS mission is to provide high quality global scale GNSS-R measurements that can reliably be used for ocean science applications. In this part of the work we develop a Neural Network based quality control filter for automated outlier detection for CYGNSS retrieved winds. The primary merit of the proposed Machine Learning (ML) filter is its ability to better account for interactions between the individual engineering, instrument and measurement conditions than can separate threshold quality flags for each one.PHDClimate and Space Sciences and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/166140/1/rajibala_1.pd

    Exotic decay modes of odd-Z (105–119) superheavy nuclei

    No full text
    Half-lives of proton emission for proton emitters with Z = 51 to 83 are calculated, in the frame-work of unified fission model with the penetrability calculated using the WKB approximation. For all the ground and isomeric state of the proton, the deformation degree of freedom is included. Calculated half-lives are in good agreement with the experimental ones. Experimentally for a few isotopes, proton and alpha branches are reported. Hence we have calculated the half-lives of alpha decay for these elements. For parent nuclei 157Ta, 166Ir, 167Ir, 176Tl and 177Tl, the alpha decay mode is preferred over the proton emission. Further, the calculations are extended to find half-lives of superheavy element with odd proton number in the range Z = 105 to 119, for both proton, alpha and for a few cluster decays. Calculations on superheavy elements reveal that cluster radioactivity has half-lives comparable with proton emissions. It is found that proton emission is the primary competing decay mode with respect to alpha decay for superheavy elements. Among considered clusters, 12C, 20Ne and 24Mg are found to have lowest half-lives among other N = Z clusters and for a few clusters the half-lives are found to be comparable with that of proton emission

    Cluster pre-existence probability

    No full text
    Pre-existence probability of the fragments for the complete binary spectrum of different systems such as 56Ni, 116Ba, 226Ra and 256Fm are calculated, from the overlapping part of the interaction potential using the WKB approximation. The role of reduced mass as well as the classical hydrodynamical mass in the WKB method is analysed. Within WKB, even for negative Q -value systems, the pre-existence probability is calculated. The calculations reveal rich structural information. The calculated results are compared with the values of preformed cluster model of Gupta and collaborators. The mass asymmetry motion is shown here for the first time as a part of relative separation motion

    Nuclear surface energy coefficients in cluster decay

    No full text
    The influence of different nuclear surface energy coefficients of the proximity potential in cluster decay of heavy, unstable radioactive nuclei is studied using a fission model by incorporating the preformation probability as the penetration probability of the overlapping region. An expression for preformation probability is fitted for preformation values, for which best matching is noted between calculated and experimental half-lives and is used in further calculations of cluster decay of superheavy elements. Half-lives for heavy cluster emission such as Ar, Ca, Ti, Cr, Fe, Co, Ni, Zn, Ga, Ge and Se, from superheavy nuclei with mass number in the range 252≀A≀294 252 \leq A \leq 294 are predicted using the fitted expression for preformation probability. Predicted half-lives of heavy particle decay of superheavy nuclei compare well with the other prediction for a few clusters. Alpha decay being the predominant decay mode of heavy and superheavy nuclei, half-lives of heavy and superheavy nuclei are also calculated. Calculated half-lives of alpha decay for superheavy nuclei better reproduce the experimental values

    Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications

    No full text

    Oxides, Oxides, and More Oxides: High-Îș Oxides, Ferroelectrics, Ferromagnetics, and Multiferroics

    No full text
    corecore